# How does convective self-aggregation impact precipitation extremes?

#### **Caroline Muller**

CNRS / Laboratoire de Météorologie Dynamique (LMD) Ecole Normale Supérieure Paris







Nicolas Da Silva

University of East Anglia UK

Sara Shamekh

Laboratoire de Météorologie Dynamique

Yukari Takayabu

The university of Tokyo







# Recent trends in tropical precipitation linked to organization

#### Mesoscale Convective System



#### Self-aggregation of deep convection

- SAM [Khairoutdinov & Randall 03]
- SST=300K uniform

- No Coriolis (f=0)
- Doubly periodic
- No large-scale forcing
- In RCE

Clouds over near-surface temperature in cloud-resolving model SAM



# Self Aggregation = Instability of disorganized Radiative-Convective Equilibrium "pop corn" state

[Bretherton, Blossey, Khairoutdinov, 2005; Sobel, Bellon, Bacmeister 2007; Muller, Held 2012; Emanuel, Wing, Vincent 2013; Wing Emanuel 2013; Jeevanjee Romps 2013; Khairoutdinov Emanuel, 2013; Shi Bretherton 2014; Tobin, Bony, Roca, 2012; Tobin et al, 2013; Muller Bony 2015; Arnolad Randall 2015; Coppin Bony 2015; Mapes 2016; Holloway Woolnough 2016; Tompkins Semie 2017; Wing Holloway Emanuel Muller 2017; Becker Bretherton Hohenegger Stevens 2018; Yang 2018; Muller Romps 2018 ...]

# Question addressed

How does convective self-aggregation impact precipitation extremes?

Why?

## Question addressed

How does convective self-aggregation impact precipitation extremes?

Why?

How does convective self-aggregation change with warming?

Sara Shamekh poster A27 session 1

### Self-aggregation



Variance of precipitable water (mm) in simulations



Self-aggregation leads to enhanced moisture variability (moister moist region, drier dry region)



- Overall drying
- Overall warming (warmer moist adiabat)

[Muller & Held, JAS 2012]

#### Precipitation extremes with self-aggregation



⇒ increased instantaneous precipitation extremes (even more when time-accumulate)

#### Precipitation extremes with self-aggregation



⇒ + 20% increase of instantaneous precip extremes (large variability with aggregation) Why 20%?













Precip efficiency +35%



Efficiency  $\varepsilon = \alpha(1-\beta)$  [Lutsko Cronin 2018]

conversion a

1 - rain evaporation β

Cloud condensate  $q_n \longrightarrow precipitating condensate <math>q_p \longrightarrow surface precipitation +7\% (\int q_p / \int q_n) +25\% (Pr_{sfc} / Pr_{max})$ 

- ⇒ Reduced rain evaporation with aggregation dominates
- Due to moister conditions, and
- Faster terminal velocities from warmer temperatures (more rain less snow; no change in graupel)

#### Conclusions

- Self-aggregation yields increased precipitation extremes
- Thermodynamic contribution positive but small Due to moister near-cloud boundary layer
- Dynamic contribution negative
   Due to decreased entrainment effects, thus decreased CAPE

Precip efficiency contribution positive and largest
 Dominated by reduced evaporation of rain, from moister and warmer conditions (latter => faster terminal velocities)

The contribution from organized convection to precip extremes is important (compare to 7%/K increase in « pop corn » convection »